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We study the melting of an ultrathin lubricant film under friction between atomically flat surfaces at tempera-
ture dependencies of viscosity described by Vogel-Fulcher relationship and by power expression, which are
observed experimentally. It is shown that the critical temperature exists in both cases the exceeding of which
leads to the melting of lubricant and, as a result, the sliding mode of friction sets in. The values of character-
istic parameters of lubricant are defined, which are needed for friction reduction. In the systems, where the
Vogel-Fulcher dependence is fulfilled, it is possible to choose the parameters at which the melting of lubricant
takes place even at zero temperature of friction surfaces. The deformational defect of the shear modulus is
taken into account in describing the lubricant melting according to the mechanism of the first-order transition.
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1. Introduction

The problems of sliding friction continue to attract a considerable attention [1–3] due to the
phenomenon being vastly used in the engineering of smooth solid surfaces, divided by thin films
of lubricant. In works [4–10] the boundary friction is described which is realized in the case of
ultrathin films with thickness less than four diameters of molecules, at smooth or rough surfaces,
high loads and small shear rates. It is known that shear viscosity of lubricant layer depends on a
temperature [11–14]. Thus, at the derivation of basic equations describing the process of friction,
it is necessary to define the explicit form of temperature dependence of viscosity. In the previous
works [4–10] the simplest dependence of viscosity on temperature was used. However, actually, it
takes different forms for specific systems. According to the experimental results this function is
usually fixed by either Vogel-Fulcher relationship or by power dependence [11–14]. In particular,
the Vogel-Fulcher empirical formula is explained within the framework of theories of free volume
and excess configuration entropy [11]. These two ideas are realized in the Ising-Nakano microscopic
model. The introduction of the temperature-dependent effective field makes it possible to take into
account the conservation of total free volume at the defined external conditions [15]. At the presence
of the frozen disorder of interatomic connections, the glass transition is presented as rheological
transition.

The purpose of this work is to take into account the indicated dependencies in the earlier
proposed rheological model in describing the viscoelastic lubricant [4]. It allows us to spread the
developed approach to a wider class of the systems. As a result, the expressions for the melting
temperature of the lubricant are found. It is shown that systems, in which the temperature de-
pendence of the viscosity is fixed by the Vogel-Fulcher relationship, are preferable in forming the
conditions of friction reduction. This is caused by the possibility of choosing the optimal parameters
providing the liquid-like structure of lubricant at an arbitrary temperature of the sheared surfaces.
In the case of the power dependence for the viscosity being realized, the critical temperature is

∗The paper submitted to the Proceedings of the conference “Statistical physics 2005: Modern problems and new
applications” (August 28–30, 2005, Lviv, Ukraine).

†E-mail: khom@phe.sumdu.edu.ua

c© A.V.Khomenko, I.A.Lyashenko 695



A.V.Khomenko, I.A.Lyashenko

limited by the minimal non-zero value that is independent of elastic characteristics of lubricating
material.

2. Basic equations

In the previous work [4] based on the rheological description of viscoelastic medium possess-
ing the heat conductivity, a system of kinetic equations has been obtained, which determine the
mutually coordinated behaviour of the shear stress σ and strain ε, and the temperature T in an
ultrathin film of lubricant during friction between atomically flat mica surfaces. Let us write down
these equations introducing the units of measurement for variables σ, ε, T :

σs =

(

ρcvη0Tc

τT

)1/2

, εs =
σs

G0
=

(

τε

τT

)1/2 (

ρcvTcτε

η0

)1/2

, Tc , (1)

where Tc is the characteristic temperature, τT ≡ ρl2cv/κ is the time of heat conductivity, κ is
the coefficient of heat conductivity, l is the length of heat conductivity, η0 ≡ η(T = 2Tc) is the
characteristic value of viscosity, ρ and cv are the density and the specific heat capacity of lubricant,
G0 ≡ η0/τε, τε is the strain relaxation time:

τσσ̇ = −σ + gε, (2)

τεε̇ = −ε + (T − 1)σ, (3)

τT Ṫ = (Te − T ) − σε + σ2. (4)

Here the stress relaxation time τσ, the temperature Te of atomically flat mica friction surfaces,
and the constant g = G/G0 are introduced, where G is the lubricant shear modulus. Replacement
of ε/τσ by ∂ε/∂t reduces equation (2) to the Maxwell-type equation for viscoelastic matter ap-
proximation that is widely used in the theory of boundary friction [1]. The relaxation behaviour of
viscoelastic lubricant during the process of friction is also described by Kelvin-Voigt equation (3)
[4,16]. Equations (2) and (3) jointly represent the new rheological model. It is worth noting that
rheological properties of lubricant films are investigated experimentally in order to construct a
phase diagram [3]. Equation (4) represents the heat conductivity expression, that describes the
heat transfer from the friction surfaces to the layer of lubricant, the effect of dissipative heating
of a viscous liquid flowing under the action of the stress, and the reversible mechanic-and-caloric
effect in linear approximation. Equations (2)–(4) formally coincide with the synergetic Lorentz
system [17,18], where the shear stress acts as the order parameter, the conjugate field is reduced
to the shear strain, and the temperature is the control parameter. As is known this system can be
used in describing the thermodynamic phase and the kinetic transitions.

In reference [4] the melting of ultrathin lubricant film under friction between atomically flat
mica surfaces is represented as a result of the action of spontaneously appearing shear stress
leading to the plastic flow. This is caused by the heating of friction surfaces above the critical
value Tc 0 = 1 + g−1. Thus, according to this approach the studied solid-like–liquid-like transition
of lubricant film occurs due to both thermodynamic and shear melting. The initial reason for this
self-organizing process is the positive feedback of T and σ on ε (see equation (3)) conditioned by
the temperature dependence of the shear viscosity leading to its divergence. On the other hand,
the negative feedback of σ and ε on T in equation (4) plays an important role since it ensures the
system stability.

According to this approach the lubricant represents a strongly viscous liquid that can behave
similar to the solid. It has a high effective viscosity and still exhibits a yield stress [3,16]. Its solid-like
state corresponds to the shear stress σ = 0 because equation (2) falls out of consideration. Equation
(3), containing the viscous stress, reduces to the Debye law that presents a rapid relaxation of the
shear strain during the microscopic time τε ≈ a/c ∼ 10−12 s, where a ∼ 1 nm is the lattice constant
or the intermolecular distance and c ∼ 103 m/s is the sound velocity. At that the heat conductivity
equation (4) takes the form of the simplest expression for temperature relaxation that does not
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contain the terms representing the dissipative heating and the mechanic-and-caloric effect of a
viscous liquid.

Equation (3) describes the flow of lubricant with velocity V = l∂ε/∂t due to the action of
the appearing viscous shear stress. Moreover, according to reference [19] in the absence of shear
deformations the temperature mean-square displacement is defined by equality 〈u2〉 = T/Ga. The
average shear displacement is found from the relationship 〈u2〉 = σ2a2/G2. The total mean-square
displacement represents the sum of these expressions provided that the thermal fluctuations and
the stress are independent. The above implies that the transition of lubricant from solid-like to
fluid-like state is induced both by heating and under the effect of stress generated by solid surfaces
at friction. This agrees with the examination of solid state instability within the framework of shear
and dynamic disorder-driven melting representation in the absence of thermal fluctuations [19]. It
is shown [20] that the plastic flow of lubricant layer is realized at the presence of elastic stress.
The action of shear stress causes the reduction of shear modulus of lubricating material [21].
Consequently, the friction force decreases with the velocity increase at the contact V = l∂ε/∂t
because the latter leads to the growth of the shear stress σ according to the Maxwell stress – strain
ε relationship: ∂σ/∂t= −σ/τσ+G∂ε/∂t. It is assumed that the film becomes more liquid-like and
the friction force decreases with the temperature growth due to activation energy barrier decreasing
to molecular hops.

At derivation of equation (3) the simplest temperature dependence of viscosity η was defined
in relation to the critical temperature [12]:

η(T ) =
η0

T/Tc − 1
. (5)

The purpose of the proposed work is to describe the lubricant melting process at different depen-
dencies η(T ). According to the experimental data the function η(T ) is defined either by power
expression

η(T ) =
η0

(T/Tc − 1)γ
, (6)

which generalizes the formula (5) , or by Vogel-Fulcher relationship

η(T ) = η′
0 exp

B′

(T − Tc)α
, (7)

where γ, η′
0, B

′, and α are the positive constants [11–14].

3. Vogel-Fulcher relationship

Using the relationship (7) and introducing the dimensionless constants A ≡ τεG0/η′
0, B≡B′T−α

c

the equations (2), (4) are not changed, and (3) assumes the form:

τεε̇ = −ε + Aσ exp

[

− B

(T − 1)α

]

. (8)

In order to analyse the modified system we use adiabatic approximation within the framework
of which the characteristic time scales satisfy the inequality [4,5]:

τσ � τε, τT . (9)

It means that in the course of evolution the strain ε(t) and the temperature T (t) follow the change
of the stress σ(t) [17,18]. Then, the left-hand sides of equations (8) and (4) can be set equal to
zero. As a result, the dependence of the temperature T on the stress σ is fixed by equality:

σ =

√

√

√

√

Te − T

A exp
[

− B
(T−1)α

]

− 1
. (10)
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It is apparent that (10) cannot be solved analytically with respect to T and it requires the numerical
analysis. Consequently, for further consideration we have to define the values of constants included
in this equation. The analysis of expression (10) shows that at fixed relationship of parameters α,
A, and B the characteristic temperature of friction surfaces Te exists:

T 0 = 1 +
α

√

B

lnA
. (11)

Higher than this value, there is a decrease of T with σ growth, while below it the increase of
the temperature T occurs. In the case when parameters are such that the value T 0 is negative
or complex, at the increase of stress σ the lubricant temperature T grows monotonously, so that
always T > Te. Undoubtedly, the presence of characteristic value T 0 presents a great interest for
further analysis.

Figure 1. The dependence of the lubricant
temperature on the shear stress (10) at
α=A=2, B = 1. The curves 1 and 2 correspond
to the temperatures Te = 1 and 3, respectively.

Let us assume α = 2, since at the odd values
α the T vs σ dependence is two-valued at small
σ which complicates the further analysis. Then,
according to (11), for T 0 existing, the condition
A > 1 has to fulfill. At A = 2 and B = 1
the formula (10) assumes the form shown in
figure 1, where the curve 1 corresponds to the
value Te < T 0, and the curve 2 — Te > T 0. The
dashed line in figure Te = T 0 is the asymptote
for the indicated dependencies, because with
the increase of σ the temperature of the system
T goes to the value T 0.

The dependence of the strain on the stress
ε(σ) is fixed by equality

ε(σ) = σ +
Te − T (σ)

σ
, (12)

where T (σ) is defined by relationship (10). It means that function ε(σ) (12) allows us to carry out
the numerical analysis only. At small values of sheared surface temperature Te < T 0, the Hooke
law is observed ε ∼ σ in the region σ � 1. At the σ increase, the strain decreases to zero1, and
further we again have the linearly increasing section. At Te > T 0 the ε vs σ dependence has a
monotonously increasing character accepting the linear form at small and large values of stress.

After substitution of (12) in (2) the Landau–Khalatnikov equation is obtained

τσσ̇ = −∂V/∂σ, (13)

where the synergetic potential has the form

V =
1

2
(1 − g)σ2 + g

σ
∫

0

T (σ) − Te

σ
dσ, (14)

in which T (σ) dependence is defined by relationship (10). In the steady state the condition σ̇ = 0
is fulfilled and the potential (14) takes the minimum value. For the temperatures Te less than those
determined by equality

Tc 0 = 1 +
1√

ln 2g
, (15)

this minimum corresponds to the stress σ = 0. In that case the melting does not take place and
the solid-like state of lubricant is realized. Otherwise, at Te > Tc 0 the stationary value of the stress
differs from zero:

σ0 =

(

g(Te − T0)

1 − g

)1/2

, 0.5 < g < 1, (16)

1The decreasing section of the ε vs σ dependence has no physical meaning.
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and increases with Te in accordance with the root law. This causes the lubricant melting and its
transition into the liquid-like state. The corresponding strain is equal to

ε0 =

(

Te − T0

g(1 − g)

)1/2

. (17)

According to equations (10), (16) the stationary temperature T0 coincides with the critical
value Tc 0, but differs from the characteristic value of temperature T 0 (11), except the particular
case g = 1. Since Tc 0 is the minimum value of temperature at which the melting begins, the above
means that the negative feedback of the stress σ and the strain ε on the temperature T (see the
third term on the right-hand side of (4)) reduces the film temperature so much that only in this
limit it ensures the self-organization process. According to (15), if the constant g 6 0.5, the solid-
like–liquid-like transition does not take place, because the temperature Tc 0 does not exist. The
dependencies of the stationary shear stress on the temperature of friction surfaces are shown in
figure 2 for different g parameters. They meet the second-order phase transition representing the
melting of amorphous lubricant. It is worth noting that in work [4] we have obtained the value
Tc 0 = 1 + g−1 substantially differing from (15).

Figure 2. The dependence of the stationary
values of the shear stress σ0 on the tempera-
ture Te (16). The curves, located from right to
left, correspond to the values g = 0.6, 0.7,
0.8, 0.9.

Figure 3. The dependence of the synergetic
potential V (14) on the shear stress σ at
g = 0.8, α = A = 2, B = 1. The curves 1
and 2 correspond to the values Te = 1 and 5,
respectively.

The dependence of the synergetic potential V (14) on the stress σ is shown in figure 3. The
curve 1 meets the temperature values Te < Tc 0 and corresponds to the solid-like state of lubricant,
because the minimum of potential is realized at σ = 0. This is apparent from figure 2, in which
at Te < Tc 0 the stationary stress takes only zero value. The curve 2 is built at Te > Tc 0 and
corresponds to the liquid-like state of lubricant, since here the non-zero minimum of potential is
realized.

At consideration of general case, without fixing the concrete values α,A, and B, the function
T (σ) is defined by dependence (10) in all previous expressions, and the critical temperature Tc 0 =
T0 assumes the form:

Tc 0 = 1 + α

√

B

ln gA
. (18)

It is apparent that at the even values of α for the temperature Tc 0 existing, the condition gA ≡
τεG/η′

0 > 1 has to fulfill. In that case the value Tc 0 is always positive and it decreases with the
increase of the value of the product gA. Consequently, the reduction of friction should be expected
in the systems with the large gA value. However, since the radical brings a positive contribution to
the expression (18), in this case the critical temperature does not decrease below the value Tc 0 = 1.

At odd α the temperature Tc 0 exists at all positive values of g and A. Besides, the radical
can provide a negative contribution to the expression (18) leading to the values of temperature
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Tc 0 < 0. The positive temperature Tc 0 is realized at gA > 1 (when the radical gives a positive
contribution), or in the case gA < 1 at the fulfillment of condition

| ln gA| > B. (19)

In the limit B = − ln gA the lubricant melts even at zero temperature of friction surfaces Te and
its liquid-like state is always realized.

4. Power dependence

In the previous section the temperature dependence of viscosity η(T ), fixed by Vogel-Fulcher
relationship (7), is considered. Let us use the power dependence for the approximation of η(T ) (6).
In that case in the initial system (2)–(4) the second equation assumes the form

τεε̇ = −ε + (T − 1)γσ. (20)

Then, within the framework of adiabatic approximation (9) we obtain the T (σ) dependence

σ =

√

Te − T

(T − 1)γ − 1
, (21)

which at arbitrary γ qualitatively repeats the equation (10) represented in figure 1. There is only
one difference in this case – the characteristic value of temperature T 0 is fixed by equality T 0 = 2.
The ε(σ) dependence is found from condition (12), where T (σ) is given by expression (21), and it
has the form described in section 3.

Similarly, we obtain the Landau-Khalatnikov equation (13) with synergetic potential (14), in
which T (σ) is defined by the relationship (21). In this case the critical temperature

Tc 0 = 1 + g−1/γ (22)

Figure 4. The dependence of the critical temper-
ature Tc 0 on the parameter γ (22). The curves,
located from right to left, correspond to the val-
ues g = 0.1, 0.2, 0.4, 0.6, 0.8.

coincides with its stationary value T0, as at use
of Vogel-Fulcher formula. Note that in (22) the
parameter g ≡ G/G0 may be arbitrary. The
stationary values of the stress and the strain
are given by relationships (16), (17). Thus, at
power dependence η(T ) the similar behaviour
of the system is observed differing only in the
values of critical Tc 0, stationary T0, and char-
acteristic T 0 temperatures.

The dependencies of the critical tempera-
ture Tc 0 on the parameter γ are presented in
figure 4 for the different values g < 1. It is
seen that Tc 0 decreases with the growth of γ
and g. At large γ values the temperature Tc 0

asymptotically approaches the minimum possi-
ble value Tc 0 = T 0 = 2. Consequently, since
the lubricant melting occurs above the temper-
ature Tc 0, the reduction of friction should be

expected in the systems with the large values of g < 1 and γ > 0. At small γ the critical tempera-
ture Tc 0 diverges and the lubricant represents a solid-like structure at arbitrary real temperatures
Te of friction surfaces.

5. The effect of deformational defect of modulus

Actually, the shear modulus, introduced (in terms of the relaxation time τσ) in the equation (2),
depends on the stress value. This leads to the transition of the elastic deformation mode to the

700



Temperature dependence effect of viscosity

plastic one. It takes place at characteristic value of the stress σp, which does not exceed the value
σs (otherwise the plastic mode is not manifested). In considering the deformational defect of the
modulus we shall use τσ(σ) dependence proposed in [4] instead of τσ. Thus, equation (2) takes the
form:

τpσ̇ = −σ

(

1 +
θ−1 − 1

1 + σ/α

)

+ gΘε, (23)

where the relaxation time for the plastic mode τp = ησ/Θ is introduced (ησ ≡ τσG is the effective
viscosity, Θ is the hardening factor), θ = Θ/G < 1 is the parameter describing the ratio of tilts of
the plastic and the Hookean sections of the deformation curve, gΘ = G2/ΘG0 and α = σp/σs are
the constants. Then, for Vogel-Fulcher case, within the framework of approximation (9) the Lorentz
system (23), (8), and (4) is reduced to the Landau-Khalatnikov equation (13) with τp instead of τσ.
However, in synergetic potential (14) the coefficient g = G/G0 is replaced by gΘ, which is formally
assumed to be independent of σ, and the odd term appears proportional to θ−1 − 1:

V =
1

2
(1 − gΘ)σ2 + gΘ

σ
∫

0

T (σ) − Te

σ
dσ + α2(θ−1 − 1)

[σ

α
− ln(α + σ)

]

. (24)

The consideration of the case σ̇ = 0 leads to the equation for the stationary values of the shear
stress σ0:

σ3
0(g − 1) + σ2

0(g − θ−1)α + σ0(Te − T0)g + gα(Te − T0) = 0. (25)

The connection of the stationary stress and temperature T0(σ0) is fixed by equation (10), where
T = T0. Equation (25) has the third power with respect to σ0. However, it cannot be analysed
analytically, because here the quantity T0 is defined by more complex relationship obtained at
substituting the expression (10) into (25).

In the case of power dependence η(T ) we arrive at potential (24), in which T (σ) function
is defined by (21). The consideration of the stationary situation gives an equation for the shear
stress σ0 (25), where the expression for the stationary temperature follows from (21) at σ ≡ σ0.
In this case we cannot obtain the analytical expression for Tc 0 either. Fixing the set of specific
parameters, it is possible to carry out only the numerical analysis of the obtained equations for
both dependencies.

6. Conclusion

The above consideration shows that the increase of temperature of the rubbing surfaces Te

can be accompanied by self-organization of the system leading to the sliding friction mode. If the
Vogel-Fulcher temperature dependence of viscosity is valid, it is possible to select the three classes
of the systems on the lubricant state depending on temperatures of the sheared surfaces:

• the lubricant has the solid-like structure at arbitrary temperature of friction surfaces;

• there is the critical value of temperature, above which the lubricant melting occurs and it
passes from solid-like into liquid-like state;

• the lubricant is liquid-like even at zero temperature of friction surfaces.

In the case when the dependence of viscosity on the temperature is fixed by power expression,
the minimum possible value of the rubbing surfaces temperature, at which the lubricant melts, is
limited by the value Tc 0 = 2 at g ≡ G/G0 → 1 or γ → ∞. Obviously, the first type of lubricating
materials is most preferable in the concrete devices and mechanisms, since the conditions for friction
reduction are easier to provide. Taking into account the deformational defect of the modulus we
have obtained the equations describing the crystalline lubricant melting.
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Вплив температурної залежностi в’язкостi на плавлення

ультратонкої плiвки мастила

О.В.Хоменко, Я.О.Ляшенко

Сумський державний унiверситет, Україна, 40007 Суми, вул. Р.-Корсакова, 2

Отримано 6 липня 2005 р., в остаточному виглядi – 10 травня 2006 р.

Дослiджується плавлення ультратонкої плiвки мастила в процесi тертя мiж атомарно-плоскими

поверхнями при температурних залежностях в’язкостi, якi описуються спiввiдношенням Фогеля-
Фулчера i степепеневим виразом, що спостерiгаються експериментально. Показано, що в обох ви-
падках iснує критична температура, при перевищеннi якої вiдбувається плавлення плiвки мастила,
i як наслiдок встановлюється рiдинний режим тертя. Визначенi значення характерних параметрiв
мастила, необхiднi для зменшення тертя. У системах, де виконується залежнiсть Фогеля-Фулчера,
можливо пiдiбрати такi параметри, при яких плавлення мастила вiдбувається навiть при нульовiй
температурi поверхонь тертя. Для опису процесу плавлення мастила за механiзмом переходу пер-
шого роду проведено врахування деформацiйного дефекту модуля зсуву.

Ключовi слова: в’язкопружне середовище, граничне тертя, зсувнi напруження та деформацiя

PACS: 64.60.-i, 62.20.Fe, 62.20.Qp, 68.60.-p
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