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Abstract

Within the framework of Lorentz model for description of viscoelastic medium the influence of deformational defect of the shear modulus is
studied on melting of ultrathin lubricant film confined between the atomically flat solid surfaces. The possibility of jump-like and continuous
melting is shown. Three modes of lubricant behavior are found, which correspond to the zero shear stress, the Hooke section of loading diagram,
and the domain of plastic flow. Transition between these modes can take place according to mechanisms of first-order and second-order phase
transformations. Hysteresis of dependencies of stationary stresses on strain and friction surfaces temperature is described. Phase kinetics of the
system is investigated. It is shown that ratio of the relaxation times for the studied quantities influences qualitatively on the character of the
stationary mode setting.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Last years the problems of sliding friction of smooth solid
surfaces with thin lubricant film between them attract consid-
erable attention [1]. The described boundary mode of friction
is realized in the case of ultrathin lubricant films with thick-
ness less than four diameters of molecules at smooth surfaces
or asperities, high loads and low shear rates. It is characterized
by the following changes of static (equilibrium) and dynamic
properties of lubricant—simple unstructured Newtonian liquid
(see Ref. [2] and the literature cited therein):

• non-fluid-like (non-Newtonian) properties: transition be-
tween liquid and solid phases, appearance of new liquid-
crystalline states, epitaxially induced long-range ordering;

* Corresponding author.
E-mail addresses: khom@phe.sumdu.edu.ua (A.V. Khomenko),

nabla@cable-tv.sumy.ua (I.A. Lyashenko).
0375-9601/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.physleta.2007.02.010
• tribological properties: absence of flow until yield point or
critical shear stress reached, solid-like behavior of lubricant
characterized by defect diffusion and dislocation motion,
shear and jump-like melting, boundary lubrication.

Experiments were carried out with mica, silica, metal oxide,
and surfactant monolayer surfaces with organic liquids and
aqueous solutions between them. It has been shown that there
were transformations between the different types of dynamic
phases during sliding [2]. They manifest themselves in appear-
ance of intermittent (stick-slip) friction [3,4], which is charac-
terized by periodic transitions between two or more dynamic
states during the stationary sliding. The stick-slip friction is the
major reason for destruction and wear of rubbing parts. Thus,
molecularly thin lubricant films undergo more than one type of
transition that results to existence of different types of stick-slip
motion.

In the previous work [5] the approach is developed according
to which the transition of ultrathin lubricant film from solid-
like to liquid-like state takes place as a result of thermodynamic
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and shear melting. The combined analytical description of these
processes is carried out due to self-organization of the fields
of shear stresses and strain, and temperature of lubricant film
also. Additive noises of the indicated quantities, different types
of temperature dependence of viscosity, and correlated fluctua-
tions of temperature are taken into account [6–8].

However, there a question was not considered about the rea-
sons for the jump-like melting and hysteresis, which were ob-
served in the experiments [9,10]. The proposed work is devoted
to finding the realization conditions of these features taking into
account the deformational defect of the shear modulus. Our
approach is based on the Lorentz model for approximation of
viscoelastic medium [5] in the case when the first-order phase
transition is realized. Three stationary modes are found—two
solid-like, corresponding to dry friction, and one liquid-like,
meeting the sliding. The phase portraits of the system are built.
The various interrupted modes of friction depending on initial
conditions until setting of equilibrium can be realized. It is also
shown that the hysteresis manifests itself in phase portraits in
the case, when relaxation time of strain is much longer than
corresponding times for stresses and temperature.

2. Basic equations

In the previous work [5] on the basis of rheological de-
scription of viscoelastic medium, possessing heat conductivity,
the system of kinetic equations is obtained, which determine
the mutually coordinated behavior of the shear stresses σ and
strain ε, and the temperature T in ultrathin lubricant film during
the process of friction between atomically flat mica surfaces.
Let us write down these equations using the measure units:

σs =
(

ρcvη0Tc

τT

)1/2

,

(1)εs = σs

G0
≡

(
τε

τT

)1/2(
ρcvTcτε

η0

)1/2

, Tc

for variables σ , ε, T , respectively, where ρ is the mass density,
cv is the specific heat capacity, Tc is the characteristic tem-
perature, η0 ≡ η(T = 2Tc) is the characteristic value of shear
viscosity η, τT ≡ ρl2cv/κ , l, and κ are the time, the scale, and
the coefficient of heat conductivity, correspondingly, τε is the
relaxation time of strain, G0 ≡ η0/τε:

(2)τσ σ̇ = −σ + g(σ )ε,

(3)τεε̇ = −ε + (T − 1)σ,

(4)τT Ṫ = (Te − T ) − σε + σ 2.

Here the relaxation time of stress τσ , the temperature Te of
atomically flat mica surfaces of friction, and the function
g(σ ) ≡ G(σ)/G0 are introduced, where G(σ) is the shear
modulus of lubricant depending on the stress value:

(5)G(σ) = Θ + G − Θ

1 + (σ/σp)β
, β = const > 0.

At g(σ ) = G/G0 ≡ const, Eq. (2) is reduced to the Maxwell-
type equation for description of viscoelastic medium by substi-
tuting ∂ε/∂t for ε/τσ . The Maxwell equation supposes the use
of the idealized Genki model. For the dependence of stress on
strain σ(ε) this model is represented by the Hooke law σ = Gε

at ε < εm and constant σm = Gεm at ε � εm (σm, εm are the
maximal values of elastic shear stress and strain for the Hooke
section, σ > σm results in the viscous flow with deformation
rate ε̇ = (σ −σm)/η). Actually, the curve of dependence σ(ε) is
characterized by two regions: first one, Hookean, has the large
slope determined by the shear modulus G, and it is followed by
the more gently sloping section of plastic deformation whose
tilt is defined by the hardening factor Θ < G. Obviously, the
above picture means that the shear modulus depends on the
value of stresses. In order to take into account this circum-
stance we use the simplest approximation (5), which describes
the above represented transition of elastic deformation mode
to the plastic one. It takes place at the characteristic values of
shear stress σp and strain εp . It is worth noting that at descrip-
tion of structural phase transitions of liquid-like lubricant the
third-order invariants are present, which breaks the parity of
the dependence of the synergetic potential V on the stress σ .
Therefore in approximation (5) the linear term was used σ/σp

(β = 1), instead of square one (σ/σp)2 (β = 2) [11], and de-
pendence V (σ) was not already even [5]. Consequently, the
odd values of β correspond to the sliding friction experiment
at which the motion of stage in negative and positive directions
is not equivalent energetically.

Expression (3) has the form of the corresponding Kelvin–
Voigt equation [5,12], which takes into account the dependence
of the shear viscosity on the dimensionless temperature

(6)η = η0

T − 1
.

Note that jointly Eqs. (2) and (3) represent the new rheological
model, since they are reduced to the second-order differential
equation with respect to the stress σ or the strain ε. Eq. (4) is
the expression for heat conductivity, which describes the trans-
mission of heat from the friction surfaces to lubricant film, the
effect of dissipative heating of viscous liquid flowing under the
action of stress, and the reversible mechanic-and-caloric effect
in linear approximation. Eqs. (2)–(4) formally coincide with
the synergetic Lorentz system [11,13], in which the shear stress
acts as the order parameter, the conjugate field is reduced to the
shear strain, and the temperature represents the control para-
meter. As is known this system is used in describing both phase
thermodynamic and kinetic transformations. It is necessary also
to note that rheological properties of lubricant film are inves-
tigated experimentally that makes it possible to build a phase
diagram [2].

Dependence (5) describes hysteresis at melting of thin layer
of lubricant only in coordinates Te − σ during realization of
first-order phase transition [5]. Thus, deformation curve σ(ε)

is monotonous and in the case of second-order phase transition
it allows us to represent only continuous transition. However,
experimental data testify that melting of molecularly thin lu-
bricant film has jump-like character [2], although it may take
place according to the mechanism of second-order phase transi-
tion. As is shown below the description of the indicated feature
is achieved replacing the dependence g(σ ) in (2) by g(ε) ≡
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G(ε)/G0, where

(7)G(ε) = Θ + G − Θ

1 + (ε/εp)β
.

At this time the value of parameter β > 0, determining the po-
tential character, plays a key role also.

In the work [5] the melting of ultrathin lubricant film during
the process of friction between the atomically flat surfaces of
mica is represented as a result of spontaneous appearance of
shear stresses resulting in plastic flow. This is caused by heating
of friction surfaces above the critical value Tc0 = 1 + G0/G.
The initial reason for self-organization process is the positive
feedback of T and σ on ε [see (3)], conditioned by temperature
dependence of shear viscosity leading to its divergence. On the
other hand, the negative feedback of σ and ε on T in (4) has an
important role since it provides the system stability.

In accordance with such approach the lubricant represents
a strongly viscous liquid that can behave similar to the solid.
It has large effective viscosity and is still characterized by the
yield stress [2,12]. The solid-like state of lubricant corresponds
to the shear stress σ = 0, since in this case Eq. (2) falls out
of consideration.1 Eq. (3), containing the viscous stresses, is
reduced to the Debye law representing the rapid relaxation
of shear strain during microscopic time τε ≈ a/c ∼ 10−12 s,
where a ∼ 1 nm is the lattice constant or the intermolecular dis-
tance and c ∼ 103 m/s is the sound velocity. Thus, equation of
heat conductivity (4) assumes the form of simplest expression
for temperature relaxation that does not contain the terms repre-
senting dissipative heating and mechanic-and-caloric effect of
viscous liquid.

Eq. (3) describes the plastic flow of lubricant with velocity
V = h∂ε/∂t due to action of appearing viscous shear stress (h
is the film thickness). Particularly, in the case of surface force
apparatus [10] in Eqs. (2)–(4) the effective strain amplitude ε =
xmax/h is defined as the ratio of the deformation (deflection)
amplitude xmax to the h value. The effective shear rate ε̇ = εω =
V/h = ε/τσ is the product of the strain ε and the oscillation
frequency ω. In experiments where the driving force is found
we have the following expressions for viscous friction force and
shear stress [14]:

(8)Fv = ηeffV A/h, σv = Fv/A,

where ηeff is the effective viscosity, A is the area of contact. Ac-
cording to (8) the driving velocity is V = σvh/ηeff. In this case
the effective viscosity does not coincide with the real viscosity
and can be found only in experiment.

It is shown [15] that the plastic flow of lubricant layer is re-
alized at presence of elastic stress. The action of shear stress
results to reducing of shear modulus of lubricating material
[16]. Consequently, the total friction force decreases with in-
creasing velocity at the contact V because the latter leads to
the growth of the shear stress according to the Maxwell stress–
strain ε relationship: ∂σ/∂t = −σ/τσ + G∂ε/∂t .

1 It will be shown further that non-zero stresses interval can meet the solid-
like state of lubricant also.
Fig. 1. The dependence of the stationary values of the shear stresses σ0 on the
strain ε0 (9) at θ = 0.2, gθ = 0.6, α = 0.7, β = 5.0 (in the insert β = 2.0).

Moreover, in accordance with Ref. [4] in the absence of
shear deformations the temperature mean-square displacement
of molecules (atoms) is defined by equality 〈u2〉 = T/Ga.
The average shear displacement is found from the relationship
〈u2〉 = σ 2a2/G2. The total mean-square displacement repre-
sents the sum of these expressions provided that the thermal
fluctuations and the stress are independent. Above implies that
the melting of lubricant is induced both by heating and under
the effect of stress generated by solid surfaces in the course of
friction [4]. It is assumed that the film becomes more liquid-like
and the friction force decreases with the temperature growth
due to activation energy barrier decreasing to molecular hops.

3. Hysteresis behavior

Let us consider the stationary state, at which the derivative
σ̇ = 0 in Eq. (2), and value σ does not change in the lubricant.
Then, the equation is obtained similar to the Hooke law:

(9)σ = g(ε)ε, g(ε) = gθ

(
1 + θ−1 − 1

1 + (ε/α)β

)
,

where parameter θ = Θ/G < 1, determining the ratio of the
tilts for the deformation curve on the plastic and the Hookean
sections, coefficients gθ = Θ/G0 < 1 and α = εp/εs are intro-
duced.

Dependence (9) at fixed α, gθ , and θ is depictured in Fig. 1.
In the case of surface force apparatus [10] it presents the
dependence of the responding total shear stress in lubricant
σ = σel + σv on the deflection amplitude xmax, where σel and
σv = ηeffV/h are the elastic and the viscous parts, respectively.
It is apparent from here that two situations can be realized: at
small β the curve σ(ε) increases monotonically (insert in the
figure), and at

(10)β >
1 + √

θ√

1 − θ
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(a) (b)

Fig. 2. The dependence of the stationary values of the shear stresses σ0, σm on the temperature of friction surfaces Te at parameters of Fig. 1 (Fig. 2b corresponds
to the parameters of insert in Fig. 1).
it becomes non-monotonous. In the first case in accordance with
the figure the continuous melting of lubricant takes place, in the
second one—lubricant melts abruptly at the increase of stresses
to the point A, and here the transition to point B occurs. At
the further growth of the stresses the strain increases monoton-
ically, and lubricant is liquid-like. If stress is decreased now to
the point C the lubricant conserves liquid-like structure, and
then it abruptly becomes solid during transition at point D.
At the subsequent decrease of stresses lubricant is solid-like.
Similar transformations are represented as the first-order phase
transitions [17], but between the states, which are not the pure
thermodynamic phases. In describing these transformations the
concept of shear melting is used [4]. Note that such hysteresis
behavior was observed in the experiments [9,10,15].

Using (9), it is possible to find the abscissas of transition
points A and C:

εA,C = 2−1/βα
[
b(β − 1) − 2 ∓ b

√
(1 − β)2 − 4β/b

]1/β
,

(11)b = θ−1 − 1,

where the sign ‘−’ corresponds to the point A, and sign ‘+’—
to the point C. From Eq. (11) it is seen that the length of jump
at melting increases with growth α, and the difference εA −
εC → 0 with the increase of β . Thus, at large β (small α)
melting and solidification occur at the same value of strain
(εA ≈ εC ) practically, but at different values of stresses σ . As
well as in Refs. [5–8], we will accept as the order parameter the
shear stress σ : at σ > σA lubricant is liquid-like, and if σ < σC

it is solid-like. In the intermediate region σC < σ < σA the state
of lubricant is unstable, since it may exist in both phases.

For further consideration it is necessary to write down ex-
pression for synergetic potential V (σ). Within the framework
of adiabatic approximation τε, τT � τσ [5,6] it is possible to
set τεε̇ ≈ 0, τT Ṫ ≈ 0, and Eqs. (3), (4) give

(12)ε = σ − (2 − Te)
σ

1 + σ 2
,

(13)T = Te + (2 − Te)
σ 2

1 + σ 2
.

After substitution of expression (12) in (2) we obtain the
Landau–Khalatnikov equation:

(14)τσ σ̇ = −∂V

∂σ
,

where the synergetic potential is defined by equality

V = σ 2

2
− gθ

σ∫
0

[
σ − (2 − Te)

σ

1 + σ 2

]

(15)×
[

1 + θ−1 − 1

1 + (σ/α − σ(2 − Te)/(α + ασ 2))β

]
dσ.

The dependence of the stationary shear stresses σ0, σm on
the temperature of friction surfaces Te is presented in Fig. 2 at
parameters of Fig. 1 (Fig. 2b meets the insert in Fig. 1). Ap-
parently that it is non-monotonous, and in the interval T 0

c <

Te < Tc0 the two-valued section is realized inherent to first-
order phase transitions. The dashed curve corresponds to the
unstable stationary values of stresses σm, the solid curve—to
the stable σ0. It is worth noting that σm(Te) meets the Hookean
section of dependence σ0(ε0).

Note that in the region TcA < Te < TcC the potential (15)
does not give correct result, since here the model has the unsta-
ble solution, describing the decrease of stresses with growth of
strain, and this does not take into account hysteresis. In finding
the form of potential in the indicated region we replace (2) by
equation

(16)τσ σ̇ = −σ + δ,
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Fig. 3. The dependence of the synergetic potential V (15) on the shear stresses
σ at parameters of Fig. 2a, curves 1–4 correspond to the values of temperature
Te = 0.1,0.3125,1.0,2.0, respectively.

where δ is the value of the conserved stresses. In the corre-
sponding Landau–Khalatnikov equation (14) the potential is
fixed by expression

(17)V ′ = σ 2

2
− δσ.

It is seen that V ′ depends only on σ , i.e., in the situation, where
stress is conserved at the change of temperature, the value V ′
remains constant.

The dependence of the potential (15) on the stress value
at the fixed temperatures of friction surfaces is presented in
Fig. 3 corresponding to the parameters of Fig. 2a. The hys-
teresis, shown in Fig. 1, is realized in this situation. We will
consider this case in more detail.

Below than the critical value T 0
c stresses are absent in lu-

bricant (σ0 = 0). The form of potential, shown by curve 1 in
Fig. 3, corresponds to this interval of temperatures. Here one
zero minimum is realized at σ0 = 0, thus lubricant is solid-
like. At point Te = T 0

c a plateau appears on the dependence
V (σ) (curve 2). With the further increase of temperature in
a region T 0

c < Te < Tc0 the potential has the form shown by
curve 3. Here the potential barrier appears, which separates the
zero and the non-zero minimums of potential. In connection
with it the system cannot come in the stable state σ0 = 0, and
the zero value of shear stress σ is realized. The dashed curve
in Fig. 2a corresponds to the maximum of potential, the solid
curve—to its non-zero minimum. As is apparent from figure at
Te = Tc0 the jump-like increase of value σ takes place, and the
system turns to the section of dependence σ0(Te) (point A′).
This transition is caused by that at Te = Tc0 the maximum
V (σ) disappears, and with subsequent growth of Te the one
non-zero minimum of potential is realized (curve 4 in Fig. 3).
The expression for the critical temperature Tc0 is obtained from
the condition ∂V/∂σ = 0, where V is the synergetic poten-
tial (15):

(18)Tc0 = 1 + θ/gθ ≡ 1 + G0/G.

However, section AC is unstable, because here the stress is de-
creased at growth of strain (A, B , C, and D meet the similar
points in Fig. 1). In this connection further the system goes on
the way A′ − B ′ (this transition is already described by poten-
tial V ′ (17), since stress is conserved), and passes to the plastic
flow section, which corresponds to the liquid-like structure of
lubricant. With the subsequent increase of temperature Te the
stationary value of stresses σ0 grows, and lubricant becomes
less viscous, here V (σ) has the form shown by curve 4. If now
the temperature of friction surfaces is decreased, the lubricant
is liquid-like till the value TcC , further the stress is conserved to
the critical Te = TcA (corresponding to the point A).2 As is seen
from the insert in the picture at Te = TcA the system passes to
the point A, because here the dependence σ0(Te) becomes sta-
ble. At this transition system of somehow “jump over” the po-
tential barrier (dashed curve of the dependence). It is related to
that before the jump the system is described by other potential
V ′, which is characterized by absence of barrier. Here the solid-
ification of lubricant occurs, because transition takes place on
the stable part of Hooke section (according to Fig. 1 tempera-
ture Te < TcA corresponds to the Hooke domain). Now, the sys-
tem is described by potential V (σ) (15) with the barrier shown
by curve 3 in Fig. 3. With the further decrease of the tempera-
ture of friction surfaces at the point Te = T 0

c stresses decrease
abruptly to the zero, since the barrier disappears and there is one
zero minimum of V (σ). This situation corresponds to the solid-
like state of lubricant also, but with the zero value of stress. It
is supposed that the solid-like states at σ0 = 0 and σ0 = 0 dif-
fer by structure, because of transition between them takes place
according to the mechanism of the first-order phase transition.
Thus, the solid-like structure of lubricant at a temperature be-
low T 0

c is similar to the solid state, and the solid-like structure
above indicated temperature has the signs of the liquid state,
but lubricant behaves as a solid-like on the whole. The different
solid-like states correspond to the different modes of friction in
the studied system [18]. At further transition to the liquid mode
of friction the viscosity of lubricant (6) decreases, and it flows.

At described transitions the stationary values of stresses are
conserved in intervals TcA′ < Te < TcB ′ and TcA < Te < TcC .
Obviously, that equality σ0 = const is satisfied with the increase
of temperature at TcA′ < Te < TcB ′ , since it is necessary to give
some energy to lubricant for melting. Conservation of stresses
in the region TcA < Te < TcC at decrease of the sheared surfaces
temperature takes place, because for transition of lubricant in
the solid-like state it has to return energy. It is worth noting that
at the conservation of stresses between solid-like and liquid-like
phases of lubricant, it is in the intermediate state with differing
from them structure.

2 In general case the system has to move along the curve CA, but it is unsta-
ble. Therefore it is necessary to introduce the described hysteresis, and to take
into account that at this transition the system is described by potential V ′(σ )

(17).
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(a) (b) (c)

Fig. 4. The phase portraits at parameters of Fig. 2a and Te = 0.2: (a) τT � τε = 0.01τσ ; (b) τT � τε = τσ ; (c) τT � τε = 100τσ .
The situation, which is given by the insert to Fig. 1, is shown
in Fig. 2b when hysteresis is not realized in coordinates σ0(ε0).
This corresponds to the more simple case described in work [5].
Below the value Tc0 we have the solid-like state of lubricant
(σ0 = 0), at Te = Tc0 it melts at transition to the plastic flow
section, and with the subsequent increase of Te it becomes more
liquid. Then, with the decrease of temperature to the value T 0

c

lubricant is liquid-like (σ0 = 0), at Te = T 0
c it solidifies abruptly

(σ0 = 0).
The distinctive feature of such behavior is that whole Hooke

domain is unstable, since it meets the maximum of potential.
There is only one type of solid-like state of lubricant with the
zero value of stress.

Depending on the parameters of the system here the second-
order phase transition can be observed, when the temperature
Tc0 is moved on the left-hand side from T 0

c . Indeed, the unstable
stationary values of stresses σm are not realized, and hysteresis
disappears, which is characterized by a presence of T 0

c . In this
case the potential, shown by curve 1 in Fig. 3, corresponds to
the solid-like structure of lubricant, which is transformed to the
form represented by curve 4 with the increase of temperature.
Thus, the continuous transformation takes place, since the po-
tential barrier is absent. Here it is also possible to select two
situations—when hysteresis of σ0(ε0) dependence is observed,
and without it.

4. Phase kinetics

In accordance with the experimental data for organic lubri-
cating materials [2,4,6] the relaxation time of stresses at normal
pressure is τσ ∼ 10−10 s. Since ultrathin lubricant film has less
than four molecular layers, temperature relaxes to the value Te

during time satisfying the condition:

(19)τT � τσ , τε.

According to this we assume in Eq. (4) τT Ṫ ≈ 0. Also for con-
venience the time is measured in units of τσ . As a result, we
obtain the two-parameter system in the form:

(20)σ̇ = −σ + g(ε)ε,
(21)τ ε̇ = −ε + (
Te − 1 − σε + σ 2)σ,

where τ ≡ τε/τσ . The corresponding phase portraits are pre-
sented in Figs. 4–6 at the parameters of Fig. 2a for different Te.

The phase portraits describing the behavior of lubricant in
the solid-like state (Te < T 0

c ) are shown in Fig. 4 for different
ratios of relaxation times.

Particularly, Fig. 4a corresponds to the value τ = 0.01. The
isoclines obtained at equating to zero of derivatives in Eqs. (20)
and (21) are shown by dashed curves 1 and 2, respectively.
Thus, curve 1 meets the system parameters at which stresses do
not change, and line 2 corresponds to the case of strain conser-
vation. These lines intersect at the origin of coordinates forming
the unique stationary point D that is a node. It is apparent that
phase trajectories converge to the node D, i.e., stresses relax to
the zero value. Thus, at motion on a phase plane at the arbitrary
initial conditions there are two stages: on the first one, the in-
stantaneous relaxation of the system takes place to the line near
to isocline 2, on the second one—the slow motion on the in-
dicated curve. At the first stage the stresses are conserved that
reminds the transition between the friction modes described in
Section 3. Apparently, on the final stage of system relaxation to
the stationary point D the values of stress and strain go out in
the negative domain. This can be interpreted as reversible mo-
tion at which the top wall of friction moves in reverse direction.
Thus, stresses change the sign in opposite one, because of the
direction of motion changes, and strain becomes negative also.
On the other hand, it is possible to neglect the negative region,
considering it as has no physical meaning. We can assume that
at achievement by strain the zero value the system abruptly goes
to the origin of coordinates, and the equilibrium sets in.

The phase portrait shown in Fig. 4b is built for the case
when relaxation times of stresses and strain coincide (τ = 1).
It is also characterized by the singular point D, representing
the node around which the weakly pronounced oscillations of
short duration are realized now till setting of equilibrium. Here
the cases are possible when stress σ at first increases, and then
decreases, and reverse situation. It means that to that moment,
when the system will come to the equilibrium (the origin of the
coordinates), the stick-slip motion is possible. For example, in
accordance with phase trajectories, which begin at σ = 0, the
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(a) (b) (c)

Fig. 5. The phase portraits at parameters of Fig. 2a and Te = 1.0: (a) τT � τε = 0.01τσ ; (b) τT � τε = τσ ; (c) τT � τε = 100τσ .
lubricant is solid-like at first (stresses are equal to zero), then
it begins to melt (stresses increase), and then it solidifies again
(at setting of equilibrium). In order to avoid misunderstanding
let us turn attention to the following circumstance. According
to phase trajectories the cases are possible when the strain de-
creases with the growth of stresses. Above for the stationary
values of stresses it was interpreted as instability resulting in
hysteresis. Now, the rapid motion is realized. It allows us to as-
sume that system is in the unstable state, and oscillation mode is
realized in which the decrease of ε is possible with the increase
of σ .

Fig. 4c meets the case τ = 100. Here, as well as in Fig. 4a,
the two stages are selected: the rapid relaxation to the line
near to isocline 1, and further the slow motion along it. At the
first stage the strain changes weakly, and stresses decrease very
rapidly, if their initial values are on the right-hand side from iso-
cline 1, or they increase at initial σ on the left-hand side from
it. At the second stage in the top part of phase portrait the con-
figuration point moves along the plastic section, and in bottom
one—along the Hooke domain. During the way of this point
between the maximum and minimum of isocline 1 stresses in-
crease with decrease of strain. The motion is slow here, and
therefore the hysteresis has to be observed similar to described
in Fig. 1. This feature is not shown in phase portrait, and its
study requires the additional analysis, because there a lot of
limiting cases can arise, which are not considered within the
framework of the offered work.

The phase portraits in Fig. 5 are presented for the same pa-
rameters and ratios of relaxation times as in Fig. 4. But they are
built for the temperature corresponding to the section of Fig. 2a,
for which stable and unstable stationary values of shear stresses
are realized (T 0

c < Te < Tc0). In this case the system potential
has the form shown by curve 3 in Fig. 3. As well as above,
lines 1 and 2 are isoclines. The phase portraits are character-
ized by three singular points: by the node D at the origin of
coordinates, which describes the dry friction; by the saddle N

corresponding to the maximum of dependence V (σ) (the un-
stable stationary point); by the node O meeting the non-zero
stationary stress, which corresponds to the unstable section AC

of dependence σ0(Te) shown in Fig. 2a. These points are given
by intersections of isoclines. Depending on the initial condi-
tions the system may come as a result of relaxation both to the
mode of stable dry friction (node D) and to the above described
unstable section (node O).

At τ = 0.01 there is the picture shown in Fig. 5a. Here, as
well as in Fig. 4a, phase trajectories rapidly converge to the line
near to isocline 2 from any point of phase plane at conservation
of stresses. Further the system relaxes to the nodes D, or O , and
determined by these points the stationary modes of friction set
in. The inclination of curve, along which motion occurs during
the second stage, depends on initial conditions. So, the system
relaxes to the point O along the plastic section of isocline 2, to
the point D—along its Hookean one. Note that in the course of
time lubricant becomes more liquid, if σN < σi < σO , and, vice
versa, more viscous at σi > σO , where σi , σN , and σO are the
initial and the stationary values of stresses. In these cases the
system comes to the singular point O . At σi < σN the lubricant
solidifies during time, and dry friction is realized (point D).

As is obvious from Fig. 5b, for τ = 1 the different types of
stick-slip motion are possible at setting of equilibrium values of
stress and strain.

The phase portrait is shown in Fig. 5c for τ = 100, where, as
well as above, there are two stages. Since the stationary point
O is on the unstable section, for the parameters of this figure
the hysteresis is characteristic.

The phase portraits for the temperature domain of Fig. 2a,
corresponding to the stable sliding friction (Te > TC ), are
shown in Fig. 6. Here in the course of evolution the non-zero
stationary value of shear stresses is set in σ0 = 0 meeting the
minimum of synergetic potential V (σ) (the maximum of dis-
tribution function of stresses P(σ) over their value). The phase
portraits are characterized by two singular points—by the sad-
dle D at the origin of coordinates and the node O at the non-
zero values of stress and strain, which are given by intersections
of isoclines 1 and 2.

At τ = 0.01 the situation is observed shown in Fig. 6a. Here,
as well as above, phase trajectories converge rapidly to the line
near to isocline 2 from any point of phase plane at conserva-
tion of stresses. Then, the system relaxes to the non-zero value
σ0 = 0, as a result, the stationary sliding friction sets in. How-
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(a) (b) (c)

Fig. 6. The phase portraits at parameters of Fig. 2a and Te = 3.0: (a) τT � τε = 0.01τσ ; (b) τT � τε = τσ ; (c) τT � τε = 100τσ .
ever, the curve, along which motion occurs during the second
stage, corresponds to the plastic section of dependence σ(ε),
i.e., system is liquid-like always, except only the cases when
initial value of stresses is near zero (the melting occurs). Note
that in the course of time the lubricant becomes more liquid, if
σi < σO , and, vice versa, more viscous at σi > σO .

As is apparent from Fig. 6b, for τ = 1 at setting of station-
ary sliding friction the different types of stick-slip motion are
possible. However, at any initial conditions the system comes
to the steady sliding friction.

The phase portrait is shown in Fig. 6c for τ = 100, where,
as well as in Figs. 4c and 5c the two above described stages are
seen. The stationary point O is on the plastic flow region. The
hysteresis is characteristic also for the parameters of this figure.

The difference of described in Figs. 4–6 situations is
achieved due to the change of isocline 2 form with the vari-
ation of temperature Te of friction surfaces, while the form of
isocline 1 does not depend on it. The value of β influences sub-
stantially on the phase portraits, however, its variations do not
change qualitatively the character of the system behavior. At
τ � 1 it is necessary to introduce hysteresis [19], because the
slow motion of the system occurs near the isocline 1, and the
condition of stationarity is valid in every time moment. The
hysteresis is similar to described in Fig. 1, since the depen-
dence, presented in this figure, represents isocline 1 shown in
phase portraits.

5. Conclusion

The above consideration shows that the hysteresis, realized
at melting of thin lubricant film according to the mechanism
of first-order phase transition, can be described taking into ac-
count the deformational defect of the shear modulus. The basic
feature of such behavior is that lubricant melts and solidifies
at the different values of shear stress, which acts as the order
parameter. The two solid-like states of lubricant and one liquid-
like phase have been found, the transition between which takes
place in accordance with indicated hysteresis. The phase kinet-
ics is studied, and depending on initial conditions the different
types of stick-slip motion are predicted. The elastic and thermal
parameters of lubricant are defined, at which as a result of this
motion the sliding, or the dry friction sets in. Particularly, it is
shown that the ratio of shear stress and strain relaxation times,
fixed by film thickness, defines different intermittent friction
modes.
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